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ABSTRACT

0
.l The effective viscosity of a suspension is defined to be the four-tensor which

relates the average deviatoric stress to the average rate of strain We determine the

cffective viscosity of an array of spheres centered on the points of a periodic lattice

in an incompressible Newtonian fluidA The formulation involves the traction

exerted on a single sphere by the fluid, and an integral equation for this traction is

derived. For lattices with cubic symmetry the effective viscosity tensor involves

just two parameters. IMt are computed numerically for simple, body-centered

and face-centered cubic lattices of spheres with solute concentrations up to or".
the close-packing concentration. Asymptotic results for high concentrations care

obtained for arbitrary lattice geometries. and found to be in good agreement with

the numerical results for cubic lattices The low concentration asymptdtd ...pait

sions of Zuzovsky also agree welU with the numerical results.
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A

ntwroducon

We shall calculate the effective viscosity of a suspension of rigid spheres in an incompressible

viscous fluid, with the spheres centered at the points of a periodic lattice. For such a special

configuration we can obtain results for all values of timbyeiwmwcentration c, from zero up to

the close-packing value c.,

We begin by proving that the average deviatoric stress in the suspension is linearly related to

the average rate of strain. The effective viscosity pkl is defined to be the four-tensor in this rela-

tion. It is determined by the traction of the fluid on a single sphere, and an integral equation for

this traction is derived. Its kernel is a periodic Green's function which can be represented as a sum

over the reciprocal lattice. The integral equation' also involves the angular velocity of the sphere,

for which a second equation is obtained.

For a cubic lattice (simple, body-centered or face-centered) the symmetries of the kernel

greatly simplify die integral equation. It can be shown that the angular velocity of each sphere is

just one half the curl of rt- average fluid velocity, and the effective viscosity tensor simplifies to

Here i is the viscosity of the fluid, 8y" is one if all the subscripts are equal and zero otherwise,

and a and P are functions of the concentration and the lattice geometry which can be expressed as

integrals of the traction over a single sphere. We use a Galerkin method to solve for the traction,

following the procedure used by Zick and Homsy (1982) and Zick (1983). The results for a and

are shown in Illustrations 1-6.

For low concentrations Zuzovsky (1976) and Zuzovsky, Adler and Brenner (1983) have

obtained asymptotic formulas for a and P3 to O(c'0 f). Our numerical results corroborate their for-

mulas and determine their range of validity. Frankel and Acrivos (1967) obtained the leading order

term in the asymptotic expansion for a at high concentrations, but only for a simple cubic lattice.

Zuzovsky (1976) corrected their result and also gave the leading order term for /3. We have

- 'Iiitk~~,.~) 14!6# 15
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obtained additional terms in these expansions for a simple cubic lattice and have also calculated the

corresponding results fbr body-centered and face-centered cubic lattices. Our analysis is in fact

valid for arbitrary lattice geometries, and a general high concentration asymptotic formula fbr plow

is given. The asymptotic formulas for the three cubic lattices are in good agreement with our

numerical results except for P in the face-centerd case, where numerical errors at high conccntra-

tions are severe. These results show that the contention by Kapral and Bedeaux (1978) of a singu-

larity at less than close-packing concentrations is incorrect.

This work was supported in part by the Air Force Offie of glaintific Research,
the Army Research Office, the Offtce of Naval-_Rs-Arch and the National
Science Foundation. Computing time was provided by the CLaSSiC project
of the Office of Naval Research.

Formulation

We consider a set of solid, neutrally buoyant spheres of radius b centered on the points of an

infinite three-dimensional lauice ra= alai+aa2 +a3a3, a EZ3 . The basis vectors a, determine a

unit cell having volume TO = 1 ' (a2 x a3), and the volume concentration of spheres is

c =4wb 3/3,ra. We assume that the spheres are immersed in a homogeneous, isotropic Newtonian

fluid undergoing slow flow. Then within the region E containing the fluid, the pressure p, viscosity

it, velocity ul and stress tensor v satisfy the Stokes equations:

ax- = 0, x, EE, (2)

Vj P 8 ii + ;9(±-+ ) , (3)

--0 O, x1 EE. (4)
ax,

We introduce an overall constant shear tensor 7l, with 7u =0, by requiring that the fluid

velocity u be the sum of a linear part 7jxj and a part which is lattice-periodic. More precisely,

we impose the conditiont
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u,(x+r) = u,(x) + yjur, xcE, aZ 3. (5)

We impose no-slip boundary conditions on the surfaces of the spheres. The spheres may

rotate with some angular velocity w, which, by periodicity, must be the same for each sphere. Let

S denote the sphere centered at the origin and n the outward normal to its surface. We can

assume that S is not translating, hence the no-slip boundary condition can be expressed as

U1 = eUijkvjXk, x E aS. (6)

Finally, the assumption of slow flow leads to the vanishing of the torque on each sphere:

fasejlxjajdndA =0. (7)

Definition and Existence of the Effective Viscosity
a u,

Let Sj and T- denote the volume averages of the stress and velocity gradient respec-
3Xj

tively, over some region V. As shown by Batchelor (1970), they are related by

au1.( +"') 8U j f 1 kjkI(UR+jd (8)

Here V is the volume of the region V. the sum is over the particles in V, and the integral in the

smmand is over the surface of the summand particle. For the periodic suspension described in

the last section, with V a unit cell of the lattice containing S. (8) simplifies to

SI, = -8"+f pdV +j&(yj+yjj)+-rj-'f aokxjn t dA. (9)

and the bulk deviatoric stress Djj is therefore given by

=0 -t('y+ 7 , ) + (Vaixj -T j8ykxm)n dA. (10)

Du I~yu yi + 'CF, as
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From the linearity of the governing equations and the boundary conditions, the integral in

(10) must be linear in the average velocity gradient ymj:

fascixjnk dA = (1I)

Since no external couple is acting on the particles, Muj must be symmetric in i and j, and for

definiteness we may assume that MuiM =0, since only its contraction with yd is significant. By

using (11) we can rewrite (10) in the form

Djj = 2g&,~jy~ d (12)

where

#L= /(8L +8U-Jk 81du)+ 'o 1(MI-kI -L5 J M u). (13)

The tensor j&w is symmetric and traceless in its first pair of indices and traceless in its last

pair of indices. In Appendix A we show that

/4 = Is, (14)

and so t is symmetric in k and I as welL Thus the average deviatoric stress Djj is linearly

related to the symmetric part of y7, which is the average rate of strain tensor. We are therefore

justified in calling pjs the effective viscosity of the suspension.

The fbrmulation becomes somewhat easier to use if we multiply both sides of (13) by 27jyu

and use (11). Then

2j = j 'yjjj+yju) + ,rj'fjxj a dA. (15)

Now the effective viscosity #j;1 can be defined as the unique four-tensor which satisfies (15) for all

"y with -y =0, and which also satisfies the symmetry conditions
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a) j4'=j4U

b) =O, (16)

C) ISI; *6 .

It is interesting to note that (15) is precisely the formula one would get using the energy dissi-

pation method. The right side of (15) is the actual rate of energy dissipation within a lattice cell,

while the left side is the rate of energy dissipation that would occur in a homogeneous fluid with

viscosity four-tensor/ tj under the same overall shear yj,. However, the symmetry condition (14)

is necessary to define tptw uniquely from this equation, and a proof of this identity apparently

requires recourse to the averaged equation formulation.

Integral Equation Formulation

The basic unknown quantity in equation (15) for the effective viscosity is the traction f,

exerted by the fluid on the surface of the sphere S. It is given by

= aIins, x, C as. (17)

In this section we use Green's method and equations (2)-(7) to derive an integral equation of the

first kind for fl. The derivation follows that of Zick and Homsy (1982).

The fundamental singular solution vjk, ri j, q, corresponding to unit forees in the k direc-

don applied at all positions y + r, sotisfies

Vik (YY) =0, (18)
axi

--SIk ____.

11,k(xj) = -qk(x,y)Bi + (2'- +  j) (19)8Xj ax,

8 =j -'r -8 (x-y-r (20)
ax. '



The solution for vik is (Hasimoto, 1959)

= k (f SlSk M E)e2liSa(x- y) (21)
v)= 1'.0 ISa"2  ISI 4 ,

Here

Sa = aib + a2 2 + alb, aeZ3, (22)

is a vector in the reciprocal lattice, which has basis

b 1 = r-l(a2xa). b2 = rj-l(a3xal), b3 = i- (axa, (23)

The prime on the sum in (21) means that the index a =0 is to be omitted.

Let T be a unit cell containing the. sphere at the origin and let Eo = T-S be the fluid

region within T. For yCEO we multiply (20) by ui(x) and integrate over Eo to get

f uO (xAr!8 ) dx = -uk(y), yCEO. (24)

From (2), (3), (18) and (19) it may be shown that

8ui ava
j.-.r Uk- a~ -U-(25)

Then, by using (4), (25) and the divergence theorem, we can write (24) in the form

fora [uTJt-vkajjnjdA(x) = -uk(y). yEEO. t (26)

We now proceed to simplify this equation. 1f f is any lattice-periodic function then the integral of

fn over the surfee of a unit cell is zero, since each section of the cell boundary has a congruent,

periodically translated section on which the normal points in the opposite direction. 'The tensors

Sf -iid be intpreted u f -f : the noml n, points out of both the sphereS and th unit cell T.
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• A v,* and eo are all periodic, and the nonperiodic part of u, is simply yijxj. Thus the integral

over aT in (26) becomes

farju,ry-v v&jnj dA(x) far yuxlrkn dA(x). yEEO. (27)

By using (19). (20X the divergence theorem, the periodicity of vi. and the fact that yv = 0, we can

evaluate this latter integral. The result is

far ujug - va ouinj dA (x) TI-Ml yEEO. (28)

The integral over the surface of the sphere in (26) can also be simplified. Using (6). (20) and

the divergence theorem, we can write the first part of it as

JutijndA (i) = f &i t'Ij~I gkWx,6(x- Y)1dY, y£ E0. (29)

But .ermj =0 since rA issymmetric in the indices i and j, and S(x-y)=0 because ytS. Thus

this integral is zero. This fact and (28) enable us to write (26) as

aYMYI / + f ijndA(x)- -uk(y), y E0. (30)

We now let y tend to the boundary of the sphere and use (6) to evaluate the fluid velocity

there. Then (30) becomes

fas vgunjdA(x) : ",jYj -ItjjYj, yeS. (31)

This is an integral equation for the traction f, = ,inj, but it also involves the angular velocity ol.

The no-torque condition (7) provides the needed supplementary condition, and we can solve (7)

and (31) together for the unknowns f, and &,,. These equations are

fas j(xy)fj(x)dA(x) = YkJYJ - ekajWIYj, yEaS, (32)

faseiaxjfi(x)dA(x) = 0. (33)

_ , - ,v, , , , ' ,, , . , - ":N
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The homogeneous form of these equations has the solution fi(x) = kx for any constant k.

This solution is everywhere normal to the surface of the sphere and represents a uniform pressure.

This presents no difficulties, however, for since yu =0 the solvability condition for (32) is satisfied,

and it may also be verified that any uniform pressure in the traction cancels out in equation (15) for

the effective viscosty.

Symmetry Relations and Cubic Lattices

For simple, body-centered or face-centered cubic lattices a considerable simplification of the

problem is possible. Their symmetries impart a structure to the equations which allow us to deter-

mine the angular velocity w, explicitly and to reduce to two the number of independent coefficients

in the effective viscosity tensor. To show this we define fi' to satisfy

gwfjj'as x a~aj8, yEaS (34)

and

f x, frdA(x) 0. (35)

The second term on the right side of (34) ensures that the solvability condition for the integral

equation is satisfied, and condition (35) pins down the coefficient of the null solution xi in fj.

From (32) and (34) we have, up to a solution of the homogeneous integral equation, that

A = pto(T-eG )fi'. (36)

Consider for a moment an orthogonal linear transformation / which maps the reciprocal lat-

tice onto itself. Then from (21) we can show that

1'_ V(.4qXq,*pqYq) = t. V.(xPVP), (37)

and by changing variables from x. y to jx, jy in (34) and (35) we can subsequently show that

10IL'.aI- Jk
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C,(~) L~FA( (38)

We now specialize to a cubic lattice. With no loss of generality we can assume that the coor-

dinat axes and the principal axes of the lattice coincide. Then the reciprocal lattice is also cubic

with its principal axes coincident with the coordinae axes. Thus it is invariant under the reflection

tranfrnmation p,)=(-1)'a u, which changes the sign of the I* coordinate of its argument, and

the coordinate permutation transformation -- 6,. where a is any permutation of the symbols

{1,2,3}. For these particular orthogonal transformations (38) yields

ftn(pQx) = (- MIX) + #+lij (39)

and

flne') = f *))(#( (40)

These identities can be used to simplify (32) and (33). We first solve (33) fbr wi. Substitu-

tion of (36) into (33) yields

(,-as,,)fg xjf,*dA = 0. (41)

However, (39) Implies that

fdsAtxjfjdA = (-1))+& *+S-+Sfas ,f xjfDidA. (42)

and since this must hold for any I = 1, 2, 3, the integral is non-zero only if the indices k, r, s are all

diferent, By performing a coordinate permutation a taking k-l. r-2 and s-3, and using (40),

the integrals can be expresed as

fa, exjf dA = £kfaeajlxjf?3 dA (43)

Upon subtitution of(43) into (41) we obtain

(T, - e)* = 0, k = 1,2,3. (44)
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The solution of this equation for w, is

= nJ1J' (45)

This is just one half the curl of the average velocity, which is the same angular velocity that

would be exhibited by a single sphere in an infinite fluid subjected to the shear 'ij. Thus in the

case of cubic lattices, each sphere spins as if the other spheres were not there.

The structure of the effective viscosity tensor can now be elucidated. By substituting (45)

into (36) we obtain

2 1- (+ + YTr)f , (46)

which upon substitution into (15) yields

21tNvy¥jy = p'yij(y1j + y) + 1 y,) xjfdA (47)

This can be simplified, for identities (39) and (40) readily yield

fasxsfirdA = (- = 12,3 (48)

and

fsX fr'dA = f xQ1f*)) dA( (49)

Identity (48) implies that the integral is zero unless the indices j, i, r, s are equal in pairs, and (49)

implies that many of the remaining non-zero integrals are equal. By using (48) and (49) we can

.. write relation (47) in the form

1

2#1Ju' s = YM PY(YmJ +'Yfl) + "_'1%J(Y' +T k)[ 98jA1 +(81JBid - 81J) (50)

where
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I- xf-A . (51)

The solution of (50) for j&t j which satisfies the symmetry conditions (16) is

= p(l+p)0-(kj81
8Mf- 1 + p(a-PX8,jk - 481J8k1) (52)

where

2 f(- fxJ-X~fp)dA, (53)

= 2,+1 2 .fx2f (54)

Thus the effective viscosity tensor involves just two parameters when the lattice has cubic

symmetry. They can be found from the solutions to two vector integral equations of the set (34)-

_. (35), namely those for fill and jf , 2.

Numerical Method for Cubic Lattices

For cubic lattices the two scalars in the effective viscosity tensor /tpt are determined by fill

and fi, which satisfy

p'r0  vq(xy)fi"(x)dA(x) = 8,1,- 48JYJ. y 8S, P=1,2 (55)as = 3 ~S ,=12(5

f xfi"(x)dA(x) = 0. (56)"as

These equations appear to require a numerical solution. The major difficulty in solving (55) is the

complexity of the kernel vy, given by (21), which precludes any method that requires numerous

evaluations of vy. We use a Galerkin method, with the basis functions chosen to be analytically

integrable against Vgj. This method yiclds excellent accuracy with relatively few lattice sum compu-

tations required.
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The Galerkin method may be outlined as follows. We write fill in the form

f,19 (x) = I airV1"i'x), (57)
k.as

where {qm4n)} is a set of basis fuictions on aS which span all possible solutions for ft'. The basis

functions are doubly indexed for later convenience. Substitution of (57) into (55) and integration

against a second basis function yields a linear system of infinite rank for the unknown coefficients

air.

3
X1 YAla, - bjr. j=1,2,3; 1=1,2...; n=1,2,... (58)
i=I k~m

where

wh r 'j= f a fpv tov ij(x y)4 plI)(x).ppky) dA (x) dA (y) (59)
and

br= (S 3 y~-ydA (yj (60)

The expansion (57) is truncated and the resulting finite matrix problem is solved, yielding an

approximation for the coefficients in (57).

As is readily verified from (21) and (55), fil' is an odd function of x. Thus only odd func-

tions p") need be included in the set of basis functions. We choose for the basis functions the

polynomials

yT(x) = X X-

-F X XX 2X? - (61)
TAX) = X 1 X2*X 3,

404XX = xir X ?" ,

where {(pk,qk), k = 1, 2,...) is the set of all distinct ordered pairs of non-ncgtive even integers.

These polynomials can be derived from the spherical harmonic functions and form a complete basis

for the set of odd functions defined on the surface of a sphere.
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The above basis functions allow the integrals in (59) to be evaluated analytically. Since the

basis finctions are odd, substitution of (21) into (59) yields

-as8" I S Sl -f sin(2wSa'x)ykJ~kx)dAx
= - A~x)(62)

*~ .fsin2wSay),Vj~ky) dA (y)

and we can show that (Nunan, 1983)

f sint.x)xPx2x3' dA(x) = (-1)8- 1 4wb 2P+1  (63)

bh) tj) ' (btdIb 2Mb)3 3 bfI)

Here 1 = (pi+p 2 +P 3+1). the index cj begins at 0 or 1 according as pj is even or odd and

increases by steps of 2, and

X! = (-2) (C ')- --  (64)

The matrix elements involve double integrals and thus a product of terms such as (63), but

the required calculations are not as computationally difficult as they might seem. Due to recursive

identities for the spherical Bessel functions ji(z), the matrix elements corresponding to basis func-

tions of degree less than or equal to a given M can, for cubic lattices, all be computed from the

principal lattice sums

SS"'= Z? i z, + sin'( Iz). (65)

2,, il.zI2 ,+2 a+2 ,+3 sin(lzl)coslzl), (66)

= ' z'Pz?'
CC;,"= ZP,'?

..iz,+ +:+ -+ oAlzl) (67)

¢". " t"¥ "r": ;'*e* , ra ,;¢t,,.t ...%.i,;',.,.ih f,.; 2s '.'+,..,'2t> ', ....2,x...+'2_ .' =
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for r+s+t =M+1,O5r<_s< t and 1< _c<M (SS.81 is also needed for 1=O.) In (65)-(67), z

denotes 2wbS". For M = 11, which corresponds to 78 basis functions, there are only 684 such

principal lattice sums.

For cubic lattices the symmetries of vy and the basis polynomials produce considerable struc-

ture in the linear system (58). Specifically, the matrix A' can be written in block diagonal form

with each block having one fourth the rank of the full matrix, and only one block each is required

to compute the coefficients for fi 1 and f 2. The actual systems which must be solved to compute

flu and./ l are

A Ilk, A 8k A hjj1[aij 2b??
A R Ik, A Ajk Ia2j -Ib#~ (68)
IA& A& AhliM ia:9 Lbty

and

IA??k AIJ A31AI a?j ?? = 0 (69)

A& A& A134d al 10

respectively. Each of these matrices is symmetric.

The matrix in (68) is singular, with null vector aim= 41 8 , representing a uniform pressure

on the surface of the sphere. There is no physical basis for choosing one pressure over another

(condition (56) is merely convenient), but as previously mentioned a uniform pressure does not

affect the effective viscosity. We use a least squares algorithm to obtain a solution of (68), and do

not implement (56) in the matrix equations.

The solution of equations (55M56) is not our final goal. It is rather the effective viscosity,

which requires the integrals

fx f "dA = Y alba. , = 1,2. (70)
8S k=1

Ai

,~. ~ .. - . . . .. .*. * - *.)* . - -i
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Thus we computed the effective viscosity by solving the linear systems (68) and (69), computing

a b ? (a 1 - Jk)(71)

and

P ~ bff(aR+a?k2), (72)

and substituting these into the formnula for pj4,, repeated here:

= I*Jt U(+p)'-!(Bk j+886jk -- 8ij8kl) + j(a--PX81jk-- ljkl (73)

Asymptotic Form of the Effective Viscosity Tensor

The numerical method just described constituted our primary method of solution for the

effective viscosity problem. However, as will be illustrated in the next section, the numerical

method suffered from poor convergence properties at very high concentrations. An asymptotic

analysis for the high concentration situation was therefore undertaken. An outline of the analysis is

presented in Appendix B; the results are reported here.

The small parameter in the asymptotic analysis is

C-M

The final result for the equation defining the effective viscosity tensor is

ILMIT - , 9 -i- ~ le7 nnnn (75)
JTUY~ p~gjTA ~16 80 ~

- [S&A nflg - eipqekAl A, 1  n ff,~ ljfl In a + 0(1)1

Here the sums are over all unit vectors fi in the direction of a nearest neighbor sphere, with respect

to a single reference sphere, and the matrix Ay is defiued by

q - -- p~*%.'*, ~ % *
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Aij = (iU-njnj). (76)
A

If each sphere in the lattice has more than two nearest neighbor spheres then Au is invertible. If

each sphere has only two nearest neighbor spheres, in directions ±f. then A is singular with codi-

mension 1 and null vector fR. For such two-nearest-neighbor lattices A - I should be replaced in

(75) by (BTB)-lA, where B is the 4x3 matrix consisting of A augmented by fiT.

When (75) is solved fbr j#&, the term in brackets must be made symmetric and traceless in

the subscript pairs i,j and k,l (by adding terms of the form cukj or 8jcu), and symmetric

between these pairs (by adding a term of the form cI where ci = -c )I in order to satisfy the

defining conditions (16). The precise way to do this will depend upon the particular lattice being

considered. A number of special cases have been examined for illustration, and the resulting

effective viscosity tensors are as follows.

L Two-Nearest-Neighbor Lattices, with incident directions ±f:

S- .....- _ - " lneXnjn, -- j8uXntnl -- !Sd)+ 0(1). (77)

II. Cubic Lattices:

- ,crm[(-L, -lne)X (n, -4 BuXnn,,I--!S) (78)

- 'IX 1 X8Ik86 A l-18I ._ ,)ine ] + 0(1)

IlL Tetragonal Lattice (orthogonal basis a,, with lad=1221 <1231):

"cmj( e1-- In e)Y (ninj - 18uXnkcnl-5A1) (79)

T-[& (Bj,+ BMBk u- 18B -8BJ+T 28y, JIne] + 0(1),

a1  +22
where Bi= ni i ( =- , +-)2

li l 2
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IV. Hexagonal Lattice: Same as for tetragonal lattice, but with the factor of 3/16 in the second
line of (79) replaced by 1/8.

Equation (78) for cubic lattices can be written in the form (52), from which asymptotic for-

mulas for a and P are easily obtained. They will be presented in the next section, where numerical

estimates of the leading nonsingular terms in the asymptotic expansions will also be given.

Numerical Results and Discussion

The Galerkin method used to solve (55)-(56) involves approximating fill by a finite linear

combination of basis polynomials. For any given calculation all basis polynomials of degree less

than or equal to a specified M were used. The number of basis functions for a given M is

(M + IXM + 2)/2, but because not all basis functions contribute to each fil' the actual number of

unknowns is 3(M + IXM + 3)/8 for fill and (M + IX3M + 5)/8 for ff 2. By using increasing values

of M while keeping other parameters of the problem fixedt , we obtained a sequence of results con-

verging to the exact values of a and P. Table 1 illustrates the convergence of the solutions as a

function of M for various values of c. These results are typical.

For low concentrations convergence is very rapid, and precise results can be obtained with

just a few basis functions. Indeed, for concentrations less than .06 only 3 basis functions (A = 1)

give results which have four decimal places of precision, and for concentrations less than .24 a simi-

lar degree of precision is obtained with just 21 basis functions (M = 5).

For higher concentrations the convergence rate is not as good. As c increases, the traction on

the surface of a sphere becomes more and more peaked near points which are closest to other

spheres, and more basis polynomials are needed to represent it accurately. However, the matrices

increase in size with the number of basis functions, and their condition numbers increase according-

ly. The effect of the inadequacy of the basis functions in representing the traction is magnified due

in& a sequence of results requires owly slightly more efTor thai comput ng one result.

.
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to these high condition numbers. This is particularly noticeable in the last column of Table 1.

where the computed value of a for M = 13 is actually less than that fbr M = 11. The typical

behavior was fbr a to increase with M. and such anomalies were never seen at lower concentra-

tions.

The inadequacy of a necessarily finite number of basis functions in representing the traction

at high concentrations was the major source of numerical error. There was strong evidence of a

downward bias in the high concentration computations, for all three cubic lattices. This was be-

cause the basis polynomials could represent only a smoothed approximation to the traction at high

concentrations, and so the computed estimates of the viscosity coefficients were sometimes too low.

The face-centered cubic lattice results were the most adversely affected, because each sphere in a

face-centered cubic lattice has more nearest neighbors than spheres in either a simple or body-

centered cubic lattice. Thus the traction on the sphere surface is more complicated, and less well

representable by the basis polynomials. for face-centered cubic lattices than in the other two cases.

The truncation error in the principal lattice sums (65)-(67), as measured by the variation in

the computed coefficients a and P as the summation range was increased, was insignificant except

for high concentrations and high values of M. Cancellation and roundoff errors in the pricipal lat-

tice sums were deemed insignificant in all cases, as the results did converge with increasing summa-

tion range.

The speed of the algorithm depended upon the type of lattice, the number of basis polynomi-

als. and the summation range. The computation of the principal lattice sums consumed the

preponderance of CPU time, and the complexity of this computation increased as the cube of the

summation range and as the square of Ml for a given lattice. The sums contained twice as many

points for a body-centered lattice as for a simple cubic lattice, and four times as many for a face-

centered lattice. One of the longer runs typically required several minutes of CPU time on a

VAX-11/780, while a low concentration run required only a few CPU seconds.

As previously mentioned, the numerical results tbr low conccutrations are both very precise

-~~ 10 A A~
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and quick to compute. The question remaims as to whether the results are correct. Zuzovsky

(1976) obtained low concentration asymptotic results for what we have identified as the effective

viscosity tensor. His results are

a - 5c[I-(-60b)c +l2acn+O(C7 '))h, (80)

- c[l-(l+40b)c-8ac' +O(cTF)] - ',  (81)
2

where a and b depend on the lattice geometry:

SC BCC FCC
a_ .2857 -. 0897 -. 0685
b - .04655 .01432 .01271

A comparison of our computed results with (80) and (81) is illustrated in Table 2. The results

agree to four decimal places for concentrations of .04 or less, with the degree of agreement slowly

dropping off as the concentration increases. Zuzovsky's formulas thus confirm that our program

works correctly and produces accurate results. We can then turn the tables and use our results to

check his. The values in Table 2 and similar comparisons for the other lattices indicate that (80)

and (81) are accurate to within 0.2% for concentrations up to approximately 25% that of close-

packing, and to within 5% for concentrations up to approximately 50% that of close-packing.

For high concentrations, we compare the numerical results with our asymptotic results for a

and P, obtained by writing (78) in the form (52). These formulas contain only singular terms in the

small parameter e = 1 -(c/cm) 1 3 . To improve them, we assume that the leading nonsingular

terms are 1 and Inc. Thus, for example, we write the difference between a and the singular

asymptotic terms for a simple cubic lattice in the form

a - -e ---- ne) = C + D eIne + O(e), (82)
a 16 80
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where C and D are constants to be determined. By plotting the computed value of the left side of

(82) against e In e, we determine C and D from the intercept and slope of a line drawn through the

plotted data tbr small e. We do the same fbr all other a's and P's.

Unfortunately, it is precisely for small e that the numerical results are least precise. More-

over, in computing the difference between the numerical and asymptotic values, we may lose

significant digits. For a body-centered or face-centered cubic lattce, the graphs for a exhibit

definite linear behavior as e becomes small, and the parameters C and D of the limiting line can

be determined with confidence. But in the other cases our estimates of C and D are not as reli-

able, and in the case of P for a face-centered cubic lattice no estimate of C and D can be made.

The high concentration asymptotic formulas for the effective viscosity coefficients a and fl

including our estimates of the constant terms and coefficients of e In e, are as follows:

Simple Cubic Lattices:

a - -m 7- V In -e +3.1 -0.25ene + O(e), (83)

p -- line +0.63 +O.Oelne + O(e), (84)
4

Body-Centered Cubic Lattices:

a ~ - vY Ine - 1.73 - 12.3e Ine + O(e), (85)
4

- Ine + 12.8 + 35e Ine + O(e), (86)
8 120
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Face-Centered Cubic Lattics:

a - 3'7 e-'- B- W Ins + 9.7 + 15.5elne + 0(c), (87)

32 160

_. 34 ,_ 47%iw0 Inc, +0 (1). (88)
16 so

illustrations 1-6 show our computed results plotted against the volume concentration of the

spheres, and also show graphs of Zuzovsky's low concentration asymptotic formulas and our high

concentration asymptotic formulas.

Appendix A: A symmetry relation for /&t~

In this appendix we prove the identity /lu = j ua, where jjj is the tensor appearing in (12).

The proof is a modification of that of Hinch (192), who proved a related result for a single particle

in a fluid undergoing Stokes flow.

We begin with the reciprocal theorem of Lorentz (1896), which states that for any two solu-

tions (ul, i ) and (u ',uaj) of the Stokes equations (2)-(4) in a volume bounded by a surface r with

unit normal a,

fuu jn dA = fu vjj ndA. (Al)

Let (ulsij) and (u;,u;1 ) be the two solutions of (2)-(7) corresponding to yy and y4/, respectively.

Let T be any unit lattice cell which completely encloses the sphere at the origin. Taking I to be

the boundary of the fluid region within T, the first integral in (Al) becomes

f uiu jndA = fUgikfkdA - fj eMWkX1VJjnjdA. (A2)

Only the nonpcriodic part of uiolj contributes to die integral over the cell boundary in (A2).

Moreo'er, the no-torque condition (7) implies that the last integral in (A2) is zero. Thus we have
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f uu jnjdA = f YIXJU Ilk dA. (A3)

By using (3)-(6) and the divergence theorem we can then show that

f u6 n dA = uroyj(yi4+y ) + f yjxj 'antdA, (A4)

which. using (11), may be written as

f _ia, A, = ,royjj(y j+y1) + yjMjy. (A)

Similarly,

fasu aij nj dA = proj(Y~j + Yid + YiI MiJMUPkg (A6)

The reciprocal theorem and (13) then imply

•Ly = W. (A7)

But the choices of y- and y'j were arbitrary, up to tracelessness, and j4,,, is craceless in its first and

last pairs of indices. Thus

J;'1h = F jJ. (AS)

Appendix B: Asymptotic Analysis

We consider two spheres, each of radius b and with their centers a distance 2L apart. Let A

denote a unit vector along the line connecng their centers. We define a set of cylindrical coordi-

nates (&,O,z-) with its origin at the midpoint between the spheres and its Y'-axis in the fA direction.

Let i be a unit vector in the 0= direction and let ,=xnA. For convenience we assume that

the origin is translating with a velocity equal to the average velocity of the spheres.

We write the fluid velocity in cylindrical coordinates as u = UP + T' + iv-. We define the

parameter
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b (BI)

which is small when the two spheres are nearly touching, and make the following scalings:

= eLz, z =8-IL-I ,

F= e4Lr, r - tT.

Lu, u L-if, (B2)

= Lv, v L -t17

TV= 8 Lw, w -e-L-1i,

Equations (2)-(4) can then be written as

m,+r-Iu +r- V,+w, = 0, (B3)

-p,+u, + e[r-2uu-r-v,-r- 2v,-w"I = O, (B4)

- rp Y+ , [r-u,#+ r- 2u,+ Y, + r-ly, - r-2y - r-1w8.1 = 0, (115)

-P, + e[-u,,-r -u,-r-Iv,] + e2 [w, + r-tw, + r-wJ] = 0. (116)

The boundary condition (5) can be written in the scaled coordinates as

u 2±e(h2 - 1)u, +0(82)= + (w.f +p 'yjnj)sinf ± (-. +mi-yjjnj)cos8 (137)

- ezI-(w.ft)sinO + (w.P)cosej,

±Ie(h2- I)V +0(82) = ± (w', -miyonj)sinf ± (w.A +pmyjnj)cos (8)

- e f'r + ezf(t'l)sinO + (w,,)cosfi,

W±le(h 2-1)W, +O(e2) = - A(.,i)rsinO + (&rf)rcos* ± e - nf 7ynj (139)

on z= ±h, where h =l+r 2/2.

The right sides of the boundary conditions can be divided into three parts corresponding to
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the relative normal, tangential and rotational motion of the spheres. We solve (B3)-(B6) for each

part separately. For a normal motion of the spheres, v is identically zero and p, u and w do not

depend on 0. We express these latter variables as en yunj times a regular power series in e, and

perfbrm a standard asymptotic analysis. The resulting differential equations can be integrated, with

the boundary conditions determining the constants of integration, until a last second order

differential equation involving the pressure is obtained. This is solved with the following regularity

conditions: (i) p, is regular at r=0, and (ii) p"-O as r--o. The first condition is necessary so that

the fluid velocity will be regular at r=O, and the second condition is required so that this inner

solution for the pressure can match with a (regular in e) outer solution. A similar analysis is per-

formed for the relative tangential and rotational motion problems as well. The combined results

are

p = -Ie-%njyjfnjh -2 + e tni fiKnj[(3h- 3- jh) 2 _ ,,h+.I h .-2_3j (B0)

- e[Oy,,jj +wr',)sin +(my,-n1 --,Dcos8Oh-
2rz + O(e3n)

-%nin f-h- 3r(z2-h 2)+ [(p y jnj+w.t)sin9+(mi-ynj-&.)cos8h-lz

4 4

+ l*tniyTnj[(- Ih 4r+3h-5rXzd-h4) (BI)

+ (-Lh-2r--I h-r+2 h-4rXz-h2) - .!r(1-h')J + O(e)

40 5 84

v= [(- mgyjjnj + w P)sin8 +(pr-fjjnj + .A)cos9]h-lz - (wR)re% + O(e) (B12)

w = a- n ¥ nj[(h-3- h-4)Z3 + h -Iz]  (B13)
• w'co - j 22z

+ [(p , nj + ) +( , -. p)Cos-(h-Z- I.)r

- [(w.',)in8-(wj5)cos8]r + O(e%

By using (3), (17) and (BlO)-(B13), a formula for the traction on one of the spheres can be

obtained. For the sphere centered at (F=0,. = - L), it is
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fi - Lb - L [e-y2niYnj(.(-! h - 2r) + e-f(p yjnj+ w,?)sinO+(rniTyjn,- oP)cosSjh-'

+e- nmynj(!h- r+3h-2r--1h-3r) + 0(1)] (B14)
2 5 2

+[e- 1 [(-myjnj + -P )sine+(pi'yijnj + i*r, )csOeh-' + 0(1)]i
+[e-2n1y 1nJ2h-2+ e-nljyni(!h + h

4ik Ti 5  2 4

-e- (p yj +i .*)inB +(m-jnj -w-.)cos8l-2h-r + 0(1)12

The dominant contribution to the integral in (15) at high concentrations is from the traction

near those points which are closest to neighboring spheres. By multiplying (B14) by xj and in-

tegrating over just that half of the sphere facing its neighbor, and summing the result over all unit

vectors fi in the direction of a nearest neighbor sphere, we obtain

Sf x fd + 3(_BL7),,f xfi &I - ,tilL [ninjnk~ytkn1(!-e-1- TO Ine) + "!Syntkykant In e (1115)
as 2 10 2 jfkkfhn

-2( 8 & -nk)f.,lnJ Ine + 2eakJ(nfinlj In] + 0(1).

The identity nin +mamj +APj = 8 y has been used to remove any explicit dependence of (BI5) on

Af or P.

By substituting (BIS) into (7) we obtain an algebraic equation for (Ok. It is

ApkWotk = Epi7l nint, (B16)

where A is given by (76). If there exist only two nearest neighbor spheres then A is singular and

the component of W'k along the line through their centers is free. However, it is easily verified that

such a free component does not contribute to (B15).

The final equation fbr the effective viscosity is obtained by substituting A,, 1 yj I . njn for

wk in (B15), and then substituting the result into (15). After reordering the subscripts, and using

the fact that ri"'L =3cma/4w, we obtain (75).
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Table 1: Convergence of a for Simple Cubic Lattices

M .02 .06 .12 .24 .32 .40 .46 .49
1 .053803 .18650 .46468 1.4679 2.6563 4.3606 5.8289 6.5165
3 .053804 .18653 .46552 1.5022 2.8638 5.3206 8.4031 10.479
5 .18654 .46579 1.5224 3.0151 6.2231 11.397 15.353
7 .46580 1.5228 3.0239 6.3882 12.859 19.388
9 1.5228 3.0256 6.4440 13.674 22.260

11 3.0257 6.4541 14.022 24.499
13 6.4541 14.037 24.256

Table 2: Numerical and Asymptotic Results
Low Concentrations, Simple Cubic Lattices

c a (comp.) a (asymp.) P (comp.) (asymp.)
.005 .012735 .012735 .012451 .012450
.01 .025941 .025943 .024813 .024812
.02 .053804 .053810 .049320 .049316
.04 .11567 .11570 .97696 .97677
.08 .26755 .26756 .19337 .19323
.12 .46580 .46517 .28995 .28938
.16 .72502 .72100 .39009 .38830
.20 1.0666 1.0506 .49665 .49209
.24 1.5228 1.4726 .61306 .60299
.28 2.1459 2.0068 .74379 .72355



CAPTIONS FOR FIGURES

Nunan and Keller

Figure 1: a for a simple cubic lattice versus concentration c, computed
numerically and also from the low and high concentration expansions.

Figure 2: $ for a simple cubic lattice versus concentration c, computed
numerically and also from the low and high concentration expansions.

Figure 3: a for a body-centered cubic lattice versus concentration c, computed
numerically and also from the low and high concentration expansions.

Figure 4: 8 for a body-centered cubic lattice versus concentration c, computed
numerically and also from the low and high concentration expansions.

Figure 5: a for a face-centered cubic lattice versus concentration c, computed
numerically and also from the low and high concentration expansions.

Figure 6: $ for a face-centered cubic lattice versus concentration c, computed
numerically and also from the low concentration expansion.



Figure 1: a for a simple cubic lattice versus concentration c, computed
numerically and also from the low and high concentration expansions.
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numerically and also from the low and high concentration expansions.
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Figure 3: a for a body-centered cubic lattice versus concentration c, computed
numerically and also from the low and high concentration expansions.
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Figure 4: 8 for a body-centered cubic lattice versus concentration c, computed
numerically and also from the low and high concentration expansions.
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Figure 5: a for a face-centered cubic lattice versus concentration c, computed
numerically and also from the low and high concentration expansions.
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Figure 6: B f or a face-centered cubic lattice versus concentration c, computed
numerically and also from the low concentration expansion.
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